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ABSTRACT: The low velocity scattering of a DO-F1 supertube in the background of a BMPV
black hole has been considered by Marolf and Virmani. Here we extend the analysis to the
case of the D0O-D4-F1 supertube of Bena and Kraus. We find that, similarly to the two-
charge case, there is a critical value of the supertube circumferential angular momentum;
above this value an adiabatic merger with the black hole cannot occur. By reconsidering
the calculation of supertube angular momentum in the transverse direction, correspondence
between the worldvolume and supergravity descriptions is established. We also examine
dynamical mergers and discuss their implications.
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1 Introduction

In their original worldvolume formulation, supertubes are solutions of the Dirac-Born-Infeld

(DBI) low-energy effective action for D-branes in Type ITA string theory [1]. They take the

form of tubular D-brane configurations, possessing static electric and magnetic fields on

the D-brane worldvolume that produce a nontrivial amount of angular momentum. They

also preserve the same supersymmetries as the three-charge rotating supersymmetric black



hole, called the BMPV solution after the authors of [2], which makes them ideal probes of
such a black hole.

Not being exact supergravity solutions, these ‘worldvolume supertubes’ do not in-
corporate backreaction of the supertube on the geometry, and do not account for certain
interactions. However, researchers have also found ‘supergravity supertubes’, which are ex-
act solutions of Type ITA and Type IIB supergravity actions [3, 4]. Recent work, e.g. [5-9],
has shown that supergravity supertubes are part of a larger class of solutions of super-
gravity, called black supertubes, that saturate a Bogomol’'nyi-Prasad-Sommerfeld (BPS)
bound. These supersymmetric solutions in general possess three charges, three dipole mo-
ments, two independent angular momenta and an event horizon. Their reduction to five
dimensions includes BPS black rings and BMPV black holes. This family of solutions also
contains BPS objects without event horizons, and the supertubes to which we refer in the
present work belong to this family. Moreover, certain (non-supersymmetric) higher dimen-
sional lifts of black rings, called black tubes, have been shown to correspond to excited
states of two-charge and three-charge supertubes [5, 9].

Three-charge worldvolume supertubes were introduced in [10], with a contrasting re-
alization being given in [5]. The agreement between the worldvolume and supergravity
formulations is not exact. As mentioned, generic three-charge supergravity supertubes
possess three dipole moments and two angular momenta. In contrast, both of the world-
volume supertube descriptions provided in [10] have only two dipole moments and one
nonzero angular momentum; that in [5], based on M-theory, has three dipole moments,
but again only a single nonzero angular momentum. The discrepancies are due to delocal-
ized ‘flux term’ contributions to the asymptotic charge and transverse angular momentum;
these are beyond the scope of a worldvolume analysis. We will address these discrepancies
in section 4, in the process illuminating a gauge ambiguity in the worldvolume description.

Despite its shortcomings, a great advantage of a D-brane worldvolume description over
a full supergravity solution is that a time-dependent, low velocity scattering calculation can
be performed straightforwardly. Thus we can consider not only mergers of the supertube
with a BMPV black hole that occur in the adiabatic limit, but also scattering behavior
that occurs when the supertube is moving at a small velocity (v < 1) with respect to
the black hole. The use of the DBI action to describe the physics of D-brane probes near
black holes goes back more than a decade, one early example being [11]. More recently, the
authors of [12] undertook an investigation of D2-brane supertube scattering in the vicinity
of a BMPYV black hole. The present treatment extends this analysis to the D6-brane
worldvolume supertube of [10], focusing on mergers of the supertube with the black hole.

The results we find are similar to the two-charge case, although the expressions are
more complicated. It is found that adiabatic mergers can take place when the circumfer-
ential angular momentum j; does not exceed a certain critical value j.r;;. We establish
a correspondence between the descriptions of adiabatic mergers for the worldvolume and
supergravity supertubes. For dynamical mergers, there exists, for certain ranges of the an-
gular momenta, a stable equilibrium position of the supertube. This configuration precisely
matches the location and constraints on angular momenta of the corresponding stationary
BPS solution.



Furthermore, certain dynamical mergers, which we call fragmentation mergers, naively
appear to decrease the black hole entropy. All fragmentation mergers we consider are
accompanied by a barrier in the effective potential. This group of mergers includes, but
is not limited to, overspinning mergers that violate the BMPV angular momentum bound
J? < NpgNpsNpi. If fragmentation mergers are allowed, they would presumably trigger
a thermodynamic instability that would cause the black hole to fission.

In section 2 we give background information and definitions. In section 3 we discuss
attributes and construction of the D0-D4-F1 worldvolume supertube of Bena and Kraus,
and its adiabatic mergers with the black hole. Section 4 compares adiabatic mergers of the
worldvolume and supergravity supertubes. Section 5 discusses the range of validity of the
moduli space approximation and treats dynamical scattering, i.e. the non-BPS case of a
slow velocity merger. Section 6 examines conditions for fragmentation and overspin of the
black hole, and we present some brief concluding remarks in section 7.

2 The BMPYV background

In the ten dimensional type IIA picture the black hole/supertube system has a D0-D4-
F1 composition. The full Type IIB supergravity solution for the BMPV metric and other
background fields was obtained in [13]; here we describe its IIA counterpart (related by a T-
duality transformation on the z direction). It should be noted that the conventions here are
related to those of [10] and much of the previous literature by the replacement ¢ — —¢po.
The D4-branes are wrapped on the compact 7%, which has volume Vs = (27r€)4; the F1
strings are wrapped on the compact z direction, the length of S! being 2rR,. The type
ITA supergravity solution for the BMPYV black hole, with the metric expressed in the string

frame, is
ds? = *HB(I)/QHBi/ZHﬁl(dt +91(0)der + 72(0)dpe)? + Hé/ozHllyfﬂglld% 2.1)
+H,13/02H1/2(dr + 72d6? + r?sin® 0d¢? + r% cos? Od¢3) +H1/2H 1/2d 2,
H3/2H—1/2H_

F1>
0(1) = (Hpg — 1)dt + Hpg(1dey + yadg2),
C®) = —(Hpy — 1)r?cos® O dz A dpy A dey — Hptdt Adz A (v1ddy + vades),
B® = (Hzl —1)dt Adz — Hpldz A (71dgn + v2dee),
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where ® is the dilaton, B® is the NS-NS two-form, and CV) and C®) are the Ramond-

Ramond (R-R) fields. The noncompact space we parameterize using {r, 0, ¢1, ¢2} with the

origin r = 0 at the horizon of the black hole. The angles satisfy 0 < ¢, qﬁg <27 and 0 <

0 < 5; additionally they can be related to Cartesian coordinates {z', 22,23, 2*} through
z' 4 ix? = rsin e 23 + izt = rcos 0?2,

We will also make use of the coordinates p; = rsin, po = r cos . Meanwhile, the toroidal

directions are {2% z7 28 29} so that

ds2y = (dz®)° + (da")? + (da®)” + (dz?)?. (2.6)



The angular momentum parameters 71, v2 and the harmonic functions H; are given by

W . 9 w 9
— Zsin?0 = = cos’0 2.7
Y= gsintl, 9= 5 cos”d, (2.7)
Hpo =1+ %70, Hpi=1+ %)4, Hpi =1+ —Qrgl. (2.8)

The quantities Qpo, @p4, and Q1 are the charge parameters of the black hole (taken
to be positive) with dimensions of (length)?, related to the integer numbers of D-branes
Npo, Npg, and Np; by

(R, R. &
Npo = WQDO; Npy = WQM, Np1 = WQFM (2.9)

s

where g5 is the type ITA closed string coupling constant [14]. We restrict ourselves to
situations for which g; < 1, gsNy > 1. The BMPYV black hole is characterized by angular
momenta of equal magnitude in the planes of ¢1 and ¢o; the case we will consider is that of

s
J1 +Jo 4G5w J >0, ( 0)

where G5 is the gravitational constant in five dimensions. This black hole has angular
momenta in the 4+¢; and +¢o directions, and J takes half-integer values since we set
h = 1. Furthermore, J and w are bounded; a regular horizon requires

J? < NpoNpsNp1 & w? < QpoQr1 Qpa. (2.11)

A violation of this bound would signify the presence of naked closed timelike curves (CTCs).
The field strengths and Bianchi identity are

HB) = aB?), G® =qoW, GW = qc® + HG A cW), (2.12)
dGW + H® A G? =, (2.13)

Using C®) and C) it is possible to introduce the “magnetic” potentials C®) and C(7), and
these are necessary in our analysis. They have the following field strengths and Bianchi
identities [15]:!

—«GW = GO = gc®), «G? = g® = g0 4+ 1B A O (2.14)

Notice that the field strength G is actually the negative of *xG*). The magnetic potentials
are found to be

CO) = ((Hp} — Dt + Hp}j(ndér +12dgn)) AdT? (2.16)
oM = (—(HDO —1)r2cos?0dz Adgy Adga—Hpldt Adz A (yiddy + wdebz)) AT?, (2.17)

where dT?* = dab A dz™ A da® A da®.

'Reference [15] uses (+,—, —,...,—) signature while we use (—,+,+,...,+). Therefore the relative

signs of the terms in the Bianchi identities and the conventions for the dual fields in [15] are the opposite
of ours.



What should be emphasized about the dz A dé1 A dgy term in C®) and the dz A
do1 A dpy A dT* term of C(7) is that there is gauge freedom that allows replacement of
cos? 6 with, for example, (—sin?#) in C®) and C(7). For a classical treatment (our chief
concern here), solutions related by such a gauge transformation are physically equivalent.
However, the Wess-Zumino term of the Lagrangian does not automatically treat them as
being equivalent, so ambiguities can arise from these gauge-dependent quantities. We will
appeal to exact supergravity results of section 4 to resolve the ambiguities. It turns out
that for a supertube with circumference in the ¢, direction, the replacement of cos? § with
(—sin?#) is indeed required, so that the appropriate forms of C® and ¢ are given by

C®) = (Hpy — 1) r2sin?0dz A dpy A dpa — Hpidt Adz A (vidy + vades), (2.18)
o = ((HDO — 1)r?sin0dz A dgy Ady — Hyldt Adz A (1dey + 72d¢2)) A dT*, (2.19)

contrasting with the expressions of [10, 12, 16]. This ensures accurate computation of the

transverse angular momentum.?

3 Bena-Kraus supertubes

3.1 Construction

The D6-brane worldvolume supertube of [10] is formed from a D6-brane with four dimen-
sions wrapped on T%. Another dimension of the supertube, which we parameterize using
o, wraps a curve S! in the uncompactified spacetime and its remaining direction we take
to be along the z axis. Thus the worldvolume coordinates are 2 = {t, z, o, 25, 27, 2%, 2%}.
The D6-brane possesses a gauge field on its worldvolume, F; for convenience we will work
with the quantity F' = 2w/ F , which expands as F' = %Fab dz® A dab. Tts general form
will be

F =F,dt Ndz+ F.o dz ANdo + Fyy dt A do + Fgpda® A da” + Fygda® Ada®.  (3.1)

In our conventions, F}, and F., have dimensions of length and the other F; are dimension-
less. We will use Vg, Vu, and Vi to symbolize the spatial six-volume (27)%R.¢*, compact
four-volume (27¢)* and two-volume (27)2R, of the supertube, respectively.

The gauge field components can be interpreted as collections of superstrings and lower
dimensional D-branes dissolved in the worldvolume of the D6-brane (see e.g. [17]). Thus the
supertube carries DO-brane charge qpg, D4-brane charge gp4, and fundamental superstring
charge qr1, in addition to D2 and D6-brane dipole moments nps and npg, often referred
to in the literature as “dipole charges” (see e.g. [5]).> In principle there could also be

20n the other hand, for a supertube with circumference in the ¢» direction, it is the original expres-
sions (2.4) and (2.17) that give the accurate results. The fact that a particular choice of C'® and C'(7
will not typically lead to predictions of symmetrical behavior between a ¢1-oriented tube and a ¢2-oriented
tube is an indication of the above ambiguity.

3The most general three-charge supertube also has an NS5-brane dipole moment, but that dipole is
not captured by a proper worldvolume supertube. It is possible to include an NS5 dipole charge in the
“superposition supertube” of [10], which we discuss briefly in appendix A.



D2-brane charge and a D4-brane dipole moment, but those will turn out to vanish for the
construction utilized here.

Our conventions for embedding the worldvolume into the spacetime (i.e. our gauge
choice for the Lagrangian) are that we align the axes of the worldvolume coordinates

7, 2%, 29} with those of the spacetime (i.e. the static gauge). The position of the

{t,z,25
supertube in the noncompact space is labeled by {X?} = {r,0, ¢1, ¢2}, and in the compact
space by {X?} = {z,2%, 27,28 2°}. Adopting the translational invariance of [10, 12], we
require that {X*} depend on ¢ and ¢, but not on z or the T 4 directions, while F,; depends
only on t. Thus X’ = X%(t,0). We also require that the supertube has no motion or
worldvolume dependence in the compact directions, i.e. XP = const. We will consider
only the simplest circular embeddings; our primary focus will be on the choice ¢1 = 0. In
section 6 we shall also consider ¢9 = 0.

In the worldvolume description supertubes can be discussed in terms of the DBI action,

S = /Ldt:/£d7x:/(£31+ﬁwz)d7x

= —Tpg / dze® \/— det(gap + bap + Fup) + TDs / Z (m) A e(F+b)(2) (3.2)

7—formterms

The lowercase variables (gap, bap, and c(m)) refer to the pullbacks of the spacetime fields
G s By, and C™ to the D6 worldvolume. The sum over m in the Wess-Zumino (WZ)
integral only includes terms in the wedge product that are 7-forms. Choosing the opposite
worldvolume parity to ours, e.g. the ordering {¢,0, z, ...}, would give an equivalent action
for the supertube if the sign of the WZ term were also reversed. It should also be kept in
mind that to arrive at the appropriate WZ term we must deal with the gauge ambiguity
of section 2. The explicit Lagrangian appears in section 5 and appendix A.
BPS configurations are realized in the supersymmetric limit, specified by

F.,=1, Fi, =0, Fg =Fg, and 8,X'=0. (3.3)

This provides a symmetry under exchange of the pair {26, 27} with {28 2°}. Throughout
the paper we will restrict ourselves to the case Fg7 = Fgg. The tensions of the Dp-branes
take the form

1
T @ g, a2 G4
while the tension 771 of the F-strings is ﬁ
For the case of Fg; = Fg9 = By, the supertube charges take the form
R
o1 = 28 [ dzdoF.y = "2 F,,, (3.5)
TD4 o
’R
qp2 = % dz do (d:vﬁdx?FngG? + dm8d$9Fng89) = 2a—/;onB0,
R
gpo = 28 [ a7 dz do F., Fyr Fyg = —= Fop B, (3.6)
TDO «
1 oL
= — [dT'd . 3.7
r TF1 Uath ( )



These normalizations ensure that the charges take integer values. Since

qpo !t
o _ * _p :
gps 2" (3:8)

all expressions involving B can also be written in terms of the ratio of supertube charges.
It is also significant that qpo satisfies

4p2 = 24/4D04D4 5 (3.9)

showing that gps is not an independent charge.

Our interest is in a supertube that will be T-dual to a D1-D5-P configuration, so we
require it to carry D0, D4, and F1 charge, but no D2 charge. Similarly we require it to
possess D2 and D6 dipole charge but no D4 dipole charge. Eq. (3.6) shows that a single
D6-brane tube is inappropriate for such a task. Consequently, we construct the supertube
out of an even number k of coincident D6-branes that are expected [6, 10] to form a
marginally bound state.* (This is done with the understanding that % is small enough
for the DBI approximation to hold, which implies gsk < 1.) Half of these D-branes have
Fg7 = Fg9 = +By; the others have Fg7 = Fgg = — By, and thus have the opposite sign of
gp2, but are otherwise identical to the rest.” The Fj;, become diagonal k x k matrices Fyy,
and total charge is given by tracing over the matrices. Such a configuration has Fg7 = Fgo;
Tr Fg7 = Tr Fgg = 0; and Fy,, F.o, FerFgo all proportional to the unit matrix.

The net D2 charge is eliminated because F,,Fg7 and F,,Fgg have vanishing trace,
and analysis of the open string spectrum indicates that there is no danger of a tachyon
instability from the dissolved D2 and D2-branes [20]. In contrast, the DO, D4, and F1
charges merely obtain a factor of &:

qp4 = kqpa, dpo =kdqpo, qr1 = kqri, (3.10)
R.(?
qp2 = a,g (Tl“ (—7:,20—7:67) + Tr (fzof89)) =0. (3'11)

For variables such as charge, angular momentum, and dipole charge, we use Fraktur letters
(q,j,n) to denote quantities that describe the supertube as a whole, and italic type (g, j,n)
for those that correspond to one of the constituent branes. At times we will label the

charges as {q;} where I =1,2,3 and {q1, 92,93} = {qpo, 4F1, 904}

4Actually demonstrating that a such a state is in fact bound, i.e. has a discrete energy spectrum, is
nontrivial. It has been achieved for the two-charge supertube in [18, 19].

5The construction of [10] is in flat spacetime and does not require the branes to lie in the same plane or
have the same size. Here, however, we will eventually place the supertube near a black hole, and we want to
ensure that the bound state will be maintained when the supertube has a small velocity. Thus we require
that the scattering behavior of all k branes be identical. This can be achieved if the branes all have the
same embedding and physically differ by no more than the sign of By, since, as we will see, the dynamics
depends on B2 rather than By itself.



The dipole charges n, expressed in units in which they take integer values, take the form

Npe = TI'(I]C) = k, (3.12)
6 Ve &
Npg = EW (TI']:67 =+ TI']:89) - J (TFFG’? + Trf89) = 07 (313)
2
D6 Ve o
nDQ — E% TI' (fﬁ?FSg) — kﬁBg, (314)
nnss = 0, (3.15)

where [ is the unit £ x k& matrix. The dipole np4 vanishes for the same reason as qps;
both are proportional to (Tr Fg7 + Tr Fgg). The final dipole charge nygs is not captured in
a classical D6-brane worldvolume treatment [10], and is set to zero, leaving us with three
nonzero charges and two dipole charges. The case of a three-charge supertube with only
one dipole charge, as well as that of two charges and two dipoles, is pathological and always
contains CTCs [21]. In our case, for the geometry near the supertube to be free of CTCs
we need [5, 21]

Bz _ 4po | @:@:233, (3.16)

Npe D4 "pe (4p4 &

which does indeed follow from the preceding equations.

3.2 Bena-Kraus supertubes near a BMPYV black hole

The angular momenta in the ¢; and ¢o directions are j; (the circumferential angular
momentum) and js (the transverse angular momentum). The circumferential angular mo-
mentum is essential for the stability of a supertube against collapse [1], and so j; # 0; the
focus here is on a supertube with j; > 0. If F,, > 0 the supertube charges have the same
signs as those of the black hole (which were defined to be positive); the choice F,, < 0
for the same j; would lead to supertube charges with signs opposite to the corresponding
black hole charges, i.e. anti-branes. As in [10] we take F, to be positive throughout the
paper. It should be noted that that there are actually two distinct supertube configura-
tions that possess a supersymmetric limit for the black hole background of (2.1)—(2.5). The
one considered here has F,, > 0 with j; > 0 and (in BPS configurations) j2 > 0; like the
black hole it carries angular momentum in the +¢; and +¢2 directions. There is another
supertube for this background whose supersymmetric limit has {F., < 0,j; < 0,j2 < 0}.
Unlike the other charges, gr1 has a value that in general depends on the black hole
charges, as well as the position and velocity of the supertube, as we will see in section 5.

Its form in a BPS configuration is
TD6 (HDO + B(Q)HD4) r2sin? 6 _ TDG‘/G(HDO + BgHD4) r?sin20

qr1 = 2mVpa——
TF1 F.s qDa

. (3.17)

where Vg is the full spatial six-volume (27)5R_¢*.

S Additionally, there are two supertube configurations for the oppositely charged black hole that has
C® C® and B@ given by the negative of those in (2.3)-(2.5). These configurations require Fi, = —1 in
the supersymmetric limit.



The angular momentum j;, obtained from the Lagrangian (A.2) while letting ¢; mo-
mentarily depend on time, is

T4%

= k?qquD4. (318)
é1

jlzk:jlz/dzdo'd

BPS

The symbol |pps denotes the BPS limit, specified by the conditions of (3.3). Note that
i1 = qr19p4/k, not qr1qps. Meanwhile, the supersymmetric value of jo derived from the
Lagrangian based on (2.4) and (2.17) would be given by

oL
jo = kjo = /dz dodT* — = —jepritcos® 0, where (3.19)
?2|pps
S ¢
]C;:t = jerit = T06Vs(Qpo + BiQp4) = Npo + BS@NM (3.20)

4Do
= Npo + —Npa.
qD4

However, as mentioned at the end of section 2 and in appendix A, the transverse angular
momentum of the supertube arises from the gauge-dependent portion of the Lagrangian,
Lwz. Thus (3.19) cannot be trusted without additional input to single out the physically
relevant gauge choice. As we will see later, a full supergravity analysis reveals that the
accurate result is

j2 = jerit sin® 6, (3.21)
implying that the appropriate versions of C'®) and C(7) are (2.18) and (2.19). In the
worldvolume formulation, jo vanishes in the absence of the black hole (unlike the case of
supergravity supertubes). Parenthetically, we remark that the two-charge cases it happens
that jei+ = Npy for the DO-F1 supertube, and j..+ = Npg for the D4-F1 supertube.

The supersymmetric value of the action is

S = —TD6 k/dt do dz dT4FZU (1 + Bg) = —/dt (VT4 TD49D4 + TD()CIDO)- (3.22)
This leads us to the energy of the supertube, constructed from the Hamiltonian »_ p; Gi —

L, giving

4 [ OL
Epps = [ dzdodl”™ | oo Fiz — L = Tpodpo + Vra Tpadpa + 27 R TR1q 1
4tZ BPS
1 4 gsR,

= PN <CID0 + - adpat ﬁqFl : (3.23)

Eppg is a minimum energy which saturates a BPS bound. Now, the DBI action neglects
any backreaction of the supertube on the spacetime metric and R-R fields, and consequently
it will only be valid if the influence of the supertube on the background is negligible. Thus
in the paper we require

gsk <1, gsNr>1, |il,li2] < J, qpo < Npo, qr1 < Nri, qpa < Npua,
2900

. < qr1, kdpo <jerits kdpo <, (3.24)
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Figure 1. A set of possible BPS configurations (in cylindrical coordinates {p1, ¢1, p2} where po
is on the vertical axis) of a supertube for a given value of j; when j1 < jerip. Here ji/jerie = %
The black hole horizon is at the origin (p; = 0, p2 = 0). As the supertube gets closer to the origin,
it becomes small enough to “fit” inside the black hole, and thus adiabatically merge with it. The
supertube appears as a ring because the z direction is suppressed.

(the second set of conditions arising from supergravity results of section 4), which will

supplemented by other restrictions in the dynamical case.

3.3 Adiabatic mergers with the black hole

Our choice of embedding exhausts the reparameterization freedom and thus represents
a physical orientation of the supertube with respect to the black hole. Recalling
the coordinates

p1 =rsinf = /(z1)? 4+ (22)?, p2 =rcosf =/ (x3)% 4 (24)?, (3.25)

the (circular) cross section of the supertube lies in the p;-¢1 plane; the line between the
center of this circle and the black hole is just the po axis, perpendicular to this plane.
Throughout the paper, the center of mass of the supertube moves only in the pa-¢2 plane,
so that this center either coincides with the black hole or remains “directly above” it
as shown in figures 1 and 2. The points of the supertube all have the same values of
the coordinates (r,0,¢2), (or equivalently (p1,p2,¢2)), which we will employ to specify
its location. It turns out that there is a limited set of allowed locations for a supertube
when the black hole is present. Combining (3.5) and (3.17) gives’

j1 = ar1aps = 7p6Ve (Qpo + r* + B§ (Qpa + r?)) sin 6. (3.26)

"In the next two sections, many of the expressions are given in terms of (g, ;) rather than (q,j). This

~10 -
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Figure 2. A set of possible BPS configurations when j1 > jerie. Here ji/jerie = 1.18. As
the supertube nears the black hole, its radius R approaches the limiting value R,,;,, and the
supertube cannot “fit” inside the black hole (indicated by the dot at the center). In both figures,
the units are on the order of 10'*v/a/, and the dots along the edges are included to indicate other
intermediate locations.

For a given j; and j2, (3.26) and (3.21) can be viewed as a restriction on the allowed
combinations of (r,0) for the BPS configurations. Since we are required to have j; >
0, (3.26) tells us that there are no BPS solutions of the DBI action for § = 0 at finite r,
and that the allowed supersymmetric values of r are given by

. s . . 2
P2 — J1 = JeritSin~ 0 —. (3.27)
p6Vs (1 + B3) sin” 6
Incorporating (3.21) gives
2 1 Jerit ;..
rf = (J1 — ja)- (3.28)

Tp6Ve(1 + B3) 2

BPS supertube locations must have r > 0, as those precisely at » = 0 would have null
worldvolume [12]. Equations (3.21) and (3.28) then reveal more details related to the
presence of the black hole: BPS supertubes will satsify the relations

0 < g2 < Jerit, J1> Jo- (3.29)

is merely for convenience and to make manifest the fact that these expressions are independent of k; they
certainly apply to the entire supertube as well.
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For future reference we add that the p; and po values of the supertube satisfy

2
P1(BPS) mp6Vs(1 + BF)’ P2(BPS) oeVe(1+ B3)  jo

J1— J2 9 JL=J2  Jerit —J2 (3.30)

The BPS configurations are stationary, and a given pair {ji,j2} specifies (r,0). How-
ever, if only j; is fixed, the supertube can in principle explore different regions of configu-
ration space as long as its r and 6 coordinates satisfy (3.26). During this process jo varies,
which implies that some external agent is applying a torque to the supertube. The authors
of [10] consider such a scenario, in which the supertube moves at infinitesimal velocity in
the r and 0 directions while maintaining constant ¢o position. The energy changes only
infinitesimally and {j1, qpo, qF1, qp4, np2, Npe} are conserved (even though dipole charges
are not conserved in general). The adiabatic limit of vanishing velocity is then invoked.
(In [16] this analysis was extended to the case of a supertube merging with a black ring.)

Of particular interest are the BPS solutions in which the ring is arbitrarily close to
the black hole horizon. The existence of these solutions gives rise to the idealized process
of using the adiabatic limit to bring the supertube to the horizon and then infinitesimally
farther, allowing it to fall into the black hole in an adiabatic merger. It can be seen
from (3.21) and (3.27) that when the supertube reaches r = 0, we have j; = jo = jepit sin? .
Hence, the angular momenta of the final product of the merger are still equal; it turns
out the result is just another BMPV black hole. Throughout the merger, the system is
treated as though it were a BPS configuration. The fact that there are in actuality no
BPS supertube locations at the horizon itself further distances this merger from an actual
physical process, however. For actual physical motion, analysis of the dynamical moduli-
space Lagrangian is needed. This will be treated in section 5.

The embedding radius R = R(X) of the supertube is given by (see appendix B)

R? = HggHger sin 0 = (QDO + 7"2)1/2 (QD4 + 7“2)1/2 sin? 6. (3.31)

In the asymptotically flat region at large r, R? approaches r2?sin?#, which in turn ap-
proaches a constant. The relation (3.26) between allowed locations of the supertube and
its physical quantities shows that this is just

J _ p2
R (r—o0)=——>—— =R2. 3.32
This constant is independent of the black hole charges, as we might expect. In fact, it
is precisely the value obtained for a supertube in a Minkowski background. We can also
use (3.27) and (3.28) to obtain expressions that depend solely on 6, or solely on r, that are
conducive to taking limits:

0+ (Moo — £5Np4) B2sin20) " (1 — (Npo — Lo Npa) sin28)
R — (J1+( DO — 72 D4> Oi;vz(“(j;g)( DO — o7 D4>sm ) (3.33)

_ N o 1/2 n oy 1/2 jl . 3.34
(@po+7°) """ (@pa+77) p6Vs (Qpo + Bf Qpa + (1 + Bf) 12) .
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P1

Figure 3. The configuration space (in cylindrical coordinates {pa, p2,p1} where p; is on the
vertical axis) of BPS solutions for the location of a supertube for a given value of j; when j; < jepi-

Solutions exist for all {p1, pa} such that 0 < p; < 1 and p2 > 0. Here j1/jerit = %

Inspection of Equations (3.33) and (3.34) shows that R? reduces to R2, for any  or r in the
special case of Npg = O%N D4, 1.e. when QQpg = Qp4. Our supertubes are best visualized
using the coordinates p; and ps. This facilitates clarification of the meaning of large values
of r. For our embedding, the limit po — oo signifies the center of the supertube moving
very far away from the black hole, though remaining directly above it. A schematic of BPS
configurations of a supertube, which appear ring-like due to suppression of the z direction,
appears in figures 1 and 2. In this work we only consider mergers in which j; is conserved.
Thus, (3.27), which applies during adiabatic mergers, tells us that in such a process p;
has a maximum value of R. (We emphasize that this is not the case for the dynamical
mergers discussed in section 5.) This means that at large » we have r ~ py along with
p1 = Roo, and the limit » — oo refers to {p; — Reo, p2 — 00,0 — 0}.% The configuration
space, in which every point represents a supertube location, is shown in figures 3 and 4.
Now consider small values of 7. Since sin?@ < 1 we can see from (3.27) that it is possible
to adiabatically bring the supertube to the horizon at r = 0 if

. . A
J1 < Jerit = Npo + B%@ND% (3.35)

as in figure 3. According to (3.20) and (3.31), as the supertube nears the horizon, its size
decreases to

J1 172 41/2
RX(r=0) = --Q2QY? = R2, (3.36)

Jerit

8Such a limit will be invoked again, when defining the so-called ‘Region IIT” of section 5.
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Figure 4. The configuration space of BPS solutions when j; > j..;+. There are no BPS solutions
for p; < 0.41. Here j1/jerit = 1.18. In both figures, distances are in units of 10V o .

while due to (3.27), its 6 value increases to
Sinz emerge = jl /jcrit' (337)

The value of the vertical angle at the vertex of figure 1 is 20,,¢rge.

On the other hand, if j; > jei, then the supertube cannot reach r = 0 (because it
cannot reach p; = 0, as shown in figure 4). Thus in j..;; we find a limit to the circumferential
angular momentum of a supertube that can merge with the black hole. We will see that this
is limit also holds in a full supergravity analysis: a supergravity supertube that undergoes
an adiabatic merger with the black hole has an analogous bound on its circumferential
angular momentum.

If j1 > jerit, (3.27) indicates that the closest the supertube can come is

2 jl — jcrit

= 4= JO 3.38
7'D6V6(1 + B(Z)) ( )

— 2
= Tmin-
This minimum distance occurs when sinf = 1, so using (3.31), the embedding radius at

Tmin is found to be given by
1/2 1/2
Rnin = Qoo+ 1) (Qoa 4 17ia) " > B3, (3.30)

In this case the black hole passes harmlessly through the center of the supertube, (e.g.
the bottom “ring” configuration in figure 2) while the embedding radius shrinks to its
minimum value R,,;,. The supertube then recedes, up the opposite side of the “cone” in
figure 4. As it does so, it re-expands, with R approaching R, as it gets farther away from
the black hole.
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Both the supertube and the black hole have descriptions in type IIB supergravity,
which can be obtained from the IIA solutions by T-dualizing on the z coordinate. This
procedure takes us from a D0-D4-F1 system to a D1-D5-P system, and in terms of the
charge parameters QQp; and @ ps the embedding radius is now (appendix B)

R? = (Qp1 + 7“2)1/2 (Qps + 7“2)1/2 sin? 0, (3.40)

and we also have Qp1 = Qpo and Qps = Qp4. Comparison with (3.31) shows that this is
the same embedding radius as before. Near the horizon, the IIB BMPV metric looks like
AdSs x §3 x T?.

In [7] and [10] it was pointed out that the S has a radius (in the string frame) given by

R% = QU2Q2. (3.41)

If the embedding radius of a BPS supertube at the horizon R% satisfies R(Q) > ng }7/52 ,

it was argued that in the IIB picture the supertube will not “fit” inside the near horizon
region of the black hole, and thus that the supertube cannot adiabatically merge with
it. This reasoning holds here as well. However, we are not aware of an extension of this
argument to the case of a dynamical merger, in which the tube has no obvious counterpart
to R. Indeed, it turns out that a supertube that is naively “too big” to fit, i.e. having
J1 > Jjerit, can be pushed into the black hole (taking us into the dynamical regime), as we
will discuss in section 5. Furthermore, our analysis in the dynamical case will extend to
r — oo only if the supertube moves along a path similar to that of an adiabatic merger.

4 Comparison of Bena-Kraus and supergravity supertubes

The subject of supersymmetric black rings in the presence of a BMPV black hole was
treated in [6] and the issue of adiabatic mergers of the ring with the black hole appeared
in [22, 23]. The authors, using the same embedding as presented here, found an exact BPS
supergravity solution for the eleven dimensional lift of the black ring 4+ black hole system;
this solution can also be expressed in terms of Type IIA or IIB supergravity. These are
solutions in which the black ring, like our supertube, lies directly above the black hole
when 6 < 7. The specific case of § = 7, in which the black ring and black hole lie in the
same plane and are concentric, had been found in [24, 25]. In the following section we will
label the charges and dipole moments by those of the corresponding IIA solution.

In this supergravity solution it is possible to set one of the dipole moments of the
black ring to zero, but then the causal structure of the geometry must be checked. It turns
out that eliminating the closed timelike curves forces the result to be a BMPV black hole
together with a “black ring” of zero horizon area, i.e. a supergravity supertube. Thus our
configuration is a three-charge, two-dipole supergravity supertube in a BMPV background.
Now, such a supertube has a naked curvature singularity at its core [5, 21]. However,
Reference [9] was able to describe this supertube, for a certain range of angular momentum,
as the supersymmetric limit of a family of black rings that do have regular horizons. It was
therefore suggested that despite the naked singularity, this solution should be regarded as
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physically sensible. Moreover, in [21] the singularity was attributed to brane sources and
described as not pathological. This perspective will be adopted in the present work, from
which we conclude that this singularity does not vitiate the analysis presented herein.

The supergravity solution has long range R-R fluxes, and the angular momentum
and charge measured by flux integrals at infinity (asymptotic charges) differ from those
determined by flux integrals at the supertube itself [7]. The latter quantities, called ‘micro-
scopic,” are those suitable for comparison with the worldvolume supertube, and represent
the number of D-branes and F-strings that comprise the black ring in its string theory for-
mulation.” Components of charge and angular momentum not localizable to the supertube
are ‘flux terms.” This section aims to establish correlations between the BPS worldvol-
ume and supergravity supertubes in a BMPV background, along lines similar to those in
section 8 of [5]. The results of section 4.1 of the present paper were also presented there,
although mostly in the context of the “superposition supertube”, which we briefly describe
in appendix A.

We orient the supergravity supertube in the same manner as the worldvolume super-
tube. For ease of comparison with [22] (with the caveat that our ¢o is the negative of
theirs, as mentioned in section 2, so that the corresponding ¢ angular momentum terms
will differ by a sign), we adopt the following notation: the symbols

{G1,6,G} = {Cpos Cr1,¢pa} and  {d',d* d*} = {dps,dnss,dp2} (4.1)

label the microscopic charges and dipole charges of the supergravity supertube, while

{N1,N2,N3} = {Npo, Nr1,Npa}, {q1,92,93} = {dpo,qri,q9ps}, and  (4.2)

{n',n* 0%} = {npe,nngs = 0,nps}

represent the black hole charges, worldvolume supertube charges and worldvolume super-
tube dipole charges respectively. Since the worldvolume supertube necessarily has nygs =
0, we restrict the supergravity supertube to have dyss = 0. All the {¢7,d?, Ny, n!, qr} are

integer-valued.

4.1 Isolated supergravity supertubes

Some context for later results is provided by the supergravity description of the supertube
without a black hole present. Contributions ja, jc and j. to the angular momenta of the
supergravity solution take the forms [5, 22]

12 /
in = TpeVe r?sin?0 (dpg + adeQ + \/OTdNS5>

o gsR.
. o2
= tpgVg r°sin” 0 <dD6 —+ €4dD2> , (4.3)
. I
jo = 5d°¢, (4.4)
1
je = ECIJKdIdeK =0, (4.5)

9The microscopic charges are not conserved, and there has been some dispute about their precise physical
significance. See e.g. [26, 27].
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where the microscopic angular momentum is ja, and Cryjx = |ersk].
The asymptotic charges of the spacetime we will denote by =7, and the asymptotic
spacetime angular momenta by J; and J2. These are given by

Ji =ja+ictie=)a+ic (4.6)
Jo = i¢ +ie = e, (4.7)
— 1

2= G+ 5Ckd’d =G+ (4.8)

Unlike the worldvolume case, here J5 is nonzero even without a black hole. The terms
i¢y je and (f are flux terms. Of course, since there are only two nonzero dipole charges,
jc vanishes.

Meanwhile, using (3.17), (3.12), (3.14) and (3.18) we see that for the worldvol-
ume supertube,

2

k
j2 = 0. (4.10)

The similarity of (4.3) and (4.9) superficially implies a match between ja and j;, which is
valid in this instance. However, [5] presented arguments that in the general case of jo # 0
one should identify jo with j; — jo, and that approach will be adopted here. The corre-
spondence between worldvolume supertube quantities and their microscopic supergravity
counterparts is denoted by the symbol “<”, so that

M a,2 . . .
7pe Ve r* sin? (ﬂpﬁ + £4ﬂD2> = (i1 —j2) & ia- (4.11)
We now have
j1—j2 e ja, n'ed (4.12)
along with
qr < Cr- (4.13)

Using (4.4) and (4.8) this leads to

{¢1, G5, €53 < {0,npanpe, 0} and  j¢ < npe qpo = Np2 qp4 (4.14)

after using (3.16).

Now, the worldvolume and supergravity descriptions do not agree, because the world-
volume quantities do not contain the flux terms j. and (7. Let us introduce an aug-
mented worldvolume charge, which is meant to correspond to the full supergravity space-
time charge, i.e.

g\ o =), (4.15)

A key observation is that using the augmented worldvolume charge is all that is needed to
reproduce the flux terms. Thus the replacement

qr — qg““g), (4.16)

17 -



resolves the discrepancies between the two descriptions; the substitution (4.16) introduces
effective charge and effective angular momentum that accounts for the flux terms.

Let us verify this claim. After implementing (4.16), qpo and qp4 remain unchanged,
but for qp;, the worldvolume replacement and new supergravity correspondence are
given by

qr1 — 9F1 + p2pes, (4.17)

qr1 + np2npe < (2 + (5, (4.18)

with npg npg acting as effective worldvolume charge. Substitution of (4.17) into (3.18) and
using (3.12) and (3.16) yields the accompanying change in j;:

qr19Dp4 | . (eff) _ 9F149D4

j1— Y th = T tnoedns, (4.19)
ALY 4o aps i + i (4.20)

and since ja < j1 — j2 we also have a change in js:

jo — 0+33) = npyqpu, (4.21)
Np2qp4 & jC' (4.22)

It is seen from (4.6), (4.12) and (4.14) that we can now make the correlations

(eff)

it e datic =, (4.23)

i &g = (4.24)

Hence the substitution (4.16), (a corollary of the one discussed in [5]), produces effective
angular momenta jl(ef P and j;f ! ), leading to worldvolume equivalents of 71 and Jo. How-

ever, our implementation of (4.16) is purely formal; a detailed description of its underlying
physics remains elusive. We note that the worldvolume counterparts of (ja,(r) ~ k while
those of the flux terms (j¢, (§) ~ k*. The roots of the second set of conditions of (3.24) are
now apparent: they ensure that the flux term corrections to the worldvolume quantities
are negligible.

4.2 Supergravity supertubes near a BMPYV black hole
We are now in a position to examine the changes that occur when in the vicinity of a black
hole.'® One difference is that a term

jn = d/ Nysin? 6 (4.25)

contributes to both angular momenta, and the microscopic angular momentum along the
¢1 direction is now

iT =ja +IinN. (4.26)

"Note that what the authors of [22] call the “embedding radius” is what we call the coordinate p; = 7 sin @
of the supertube. Also, what they call a, for us is cot 0, so their n’ NP7 /(1 + o?) is our d” Ny sin? 6.
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As with the worldvolume supertube merger of section 3, the merger of a supergravity
supertube with the black hole requires an external torque in the ¢9 direction, and thus
Jo varies; meanwhile {N7, (7, d!,jr, 71} are held constant. Specifically, jao and jy change
during the merger, while their sum j7 does not. The final state of such a merger is merely
another BMPV black hole, and it was shown in [22] that this adiabatic merger, like the
worldvolume one, involves no danger of lowering the entropy.

Other attributes of the supergravity solution are that for a merger to even take place,

jr < d'N; (4.27)

must be satisfied, and during the merger we have

T =ir+ic+J, (4.28)
J2 =N +ic+J, (4.29)
Er = Nr+ ¢+, (4.30)

where J is again just the BMPV angular momentum.
We now compare the supergravity and worldvolume quantities in the presence of the
black hole. Equations (3.12) and (3.14) show that for the worldvolume supertube

0 Nt = jorit, (4.31)

allowing an identification of jy with j..; sin?@. Moreover, examining (3.26) and (4.3)
confirms that we can equate j; to the microscopic supergravity quantity jp. Accordingly,
we see that in the presence of the black hole (4.12) and (4.13) still hold, and we list them
along with our other relations:

L —j2 & ia, (4:32)
ar < ¢, ned, iy eijeasin?l, i1 < jr. (4.33)

To give worldvolume counterparts to the full supergravity angular momenta, we again
implement the replacement (4.17), obtaining an effective angular momentum jl(ef D that
adds to ji:

jl(eff) = np2qp4,

i1 — 1 —i—ifeff)

. o2 o
= Tpe Vs r?sin® @ <nD6 + €4nD2> + Jerit sin? 6 + npaqp4 - (4.34)

Now, we saw before that the worldvolume analysis does not give a gauge-invariant
result for the transverse angular momentum jo in the presence of a black hole. Since
we know the supergravity supertube is an exact solution of the supergravity equations of
motion, it will guide our analysis. Equations (4.29) and (4.32) tell us that the worldvolume
jo of the supertube should just be the quantity corresponding to jn. Therefore, we demand
that the gauge-invariant j for the worldvolume supertube be

jo = jerit sin? 6. (4.35)
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This we assert is the proper supersymmetric value of jo for our embedding, which validates
the use of (2.18) and (2.19) for C®) and C(7). Equation (4.32) also implies that under the
worldvolume replacement (4.16) we obtain

jo = Jerit sin 6 + 337 = jorie sin® 0 + npa apa, (4.36)
i.e.
jz(eff) =np2qpa4- (4.37)
So as was the case without a black hole,
3D e, 8D o (4.38)

Thus, in the presence of a black hole, (4.23) and (4.24) become
(eff)

ity e ir+ic+J =, (4.39)
o+ s 4 T S v i+ T = T (4.40)

Again we have obtained worldvolume equivalents of /1 and J5. Moreover, the merger
condition (3.35) corresponds exactly to (4.27):

(1 <jerit) & (i < d'Np). (4.41)

Overall, the level of agreement we have found is encouraging.

5 The scattering calculation: low velocity dynamical mergers

5.1 Discussion of the approximation

Moving away from the idealized limit of an adiabatic merger, we consider the case of
the supertube moving at finite but slow velocity in the BMPV background. Here we
are not assuming the presence of any external torque, so, unlike the adiabatic case, js is
conserved. The only relevant embedding coordinates are {r = r(t),0 = 0(t), p1 = 0,2 =
¢2(t)}. The motion produces small deviations from the BPS configuration, thus breaking
all supersymmetries, and the energy of the tube increases to Epps + AE. To calculate
AFE, we treat the scattering process as motion on moduli space. This involves expanding
L to second order in the velocities 9, X and the fields {F},, 0F;,}, where §F;, = Fy, — 1 is
the deviation from the supersymmetric value of Fi,.

An important issue arises here that was not present for the adiabatic mergers. Consider
the supertube when 72 > Q, where Q is the largest of {Qpo, @p4, @1} In such a situation,
use of the exact DBI action provides crucial insight into the behavior of a supertube of
very small or very large radius p1.'! In the limit {p; — 0,p2 — oo}, the electric field
F, diverges as 1/pj; on the other hand whenever p; — oo, Fj, diminishes as 1/p;. In
either case, § F}, is no longer small compared to one. This indicates that our moduli space

"Recall that r? = p? + p3. When r — oo, the embedding radius R satisfies R ~ p1 = rsin# and p; can
be unambiguously termed the supertube radius.
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3 r/va'

500000

Figure 5. When j; < jq+ there is no local potential minimum. Above, ji/jerie = 0.1. In both
figures, jerie = 2 x 101, 7pg Vs = 101 /o, Qpo = 10°/, Qp4 = 10%/, Qp1 = 100/, g = 1077,
k= 20, J =0.99 vV ND0ND4NF1, qpo = 1093, and D4 = 1027.

approximation, including the Lagrangian (5.5) and the quantities derived from it, can break
down in certain versions of the limit » — oco. One illustration of the breakdown is that the
approximation incorrectly predicts that for motion along § = 7/2, the effective potential
V(r) approaches a constant as r — oo.!?

However, the locations in which the approximation still holds are adequate for our
purposes, and they do include a large-r limit. The moduli space Lagrangian (5.5) can be
shown to be valid in areas we will call Regions I, IT and III. Region I is the near-black hole

region defined by
r? < Q. (5.1)
Region II exists for the moving tubes with a BPS limit, meaning that the conditions
of (3.29) hold; it can overlap with Region I when j; < jerit. It is given by
1 Jerit , . .
2 cri
r? ~ — (J1 — J2), 5.2
Tp6Ve(1 + B2) Ja ( ) (52)
2 J1— Jo o J1—J2  Jerit —J2
e Tp6Vs(1 + B2)’ P2 o6Ve(l+ B3) o b

in which p; and pa just take the BPS values from (3.30). Region III is specified by the limit
r — 00, {p1 — R, py — o0}, (5.3)

for any radius R sufficiently close to R of (3.32). It does not exist for the motion described
in section 5.3, as those tubes are constrained to have ps = 0 at all times. In the following,
figures 5 and 7 are plots of Region I for tubes without a BPS limit, while figures 6 and 8
are plots of Regions I and II for tubes with a BPS limit. There are many cases in which
the domain of validity also extends between these three regions, so that a slowly moving
supertube remains well described by (5.5) as it moves from Region I to Region III or vice
versa. All that remains is to limit ourselves to tubes for which such is the case, through the
constraint [0F;,| < 1. With that caveat, the range described above is sufficient to capture

12 Actually, it can be shown that for a fixed value of 0, V will have a term proportional to r as r — oo.
Such calculations are similar to those performed for simpler backgrounds in [28].
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5 r/vo'

500000 1.-10

Figure 6. When j; > j..;: there is a local potential minimum. Above, j1/jerie = 37.5. In both
1

figures V(r) is measured in units of

Vo

Figure 7. V(r,0) with no potential barrier. Above, j1/jcrit = 0.1 and j2/jerie = 0.05. In both
ﬁgures7 jcrit =2x 101117 TDG‘/G = 10100/0/3 QDO = 1050/a QD4 - 1060/7 QFI - 10100/7 gs = 10757

k=20,J =99 x 102, qpg = 10?3, qps = 10?7 and V is in units of \/%

the dynamics in the situations of interest here, which include the processes that take place
near the black hole.

5.2 The dynamical Lagrangian

In anticipation of preserving the bound state of the k constituent tubes, the constituents
were constructed to all have the same location, embedding, charges and dipole charges in
section 3. To continue this theme, we now require the constituents to have identical initial
values of Fy,, F},, and all components of velocity. Thus we ensure they will move in unison
during the scattering process, and that the overall supertube maintains its integrity.

We point out that “motion” will refer to any motion of the points on the supertube
with respect to the black hole, and that this does not necessarily imply motion of the center
of mass of the supertube. This is seen through the use of the coordinates {p1, p2}. Motion
of the tube, when confined to the p;-¢1 plane as in section 5.3, involves the case in which the
center of mass of the supertube coincides with black hole, and the supertube encircles it in
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Figure 8. V(r,0) with the same parameters as in the previous figure, except that ji /jcrie = 100
and ja/jerit = 0.5. There is now a potential barrier for all  (only a portion of which can be shown
above).

the ¢ direction. The center of the tube remains stationary while the tube radius increases
or decreases. In contrast, motion in the py direction does alter the distance between the
black hole and the center of mass of the tube. In fact, any motion of the supertube center
of mass considered here occurs exclusively in the po-¢9 plane. As before, merging with the
black hole occurs when the supertube reaches the horizon, i.e. when r = 0; additionally,
6 > 0 throughout the motion.

In the previous section we saw that the full supergravity solution adds nonperturbative
contributions to the worldvolume values for qr1,j1 and jo. These flux terms, ¢§ and j, are
not localized to either the supertube or the black hole. To ensure that our worldvolume
analysis is applicable, we have demanded in (3.24) that these terms are negligible compared
to other supertube quantities:

&= kQ% <L qF1, jo = kapo < jerity )1 - (5.4)

Additionally, we mention that the use of jerit sin? @, rather than —j..i cos? @, for the super-
symmetric value of j2, along with the ordering {¢, z, o'} rather than {¢, o, 2}, leads to results
that differ somewhat from those of [12].

With attention to these considerations, we now implement the embedding (A.6); the
expanded Lagrangian density reduces from (A.2) to

Hpo + Bg¢Hpa)
2F.,

(rp6k) 'L = —F. (1+ B3) + (Qpo + BiQpa4) sin® 0, + ( F

i (HD() + BgHD4) 7“2 Sin2 95 o <FZ0'HF1 wsin2 0 i HD()HD47“2 sin2 9)

F., 2 g2 oF,,

r2sin? 6

x (Hpo + B§Hpa) <F25FEZ + 72 + 126% + 12 cos? eég). (5.5)
zZo
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The O(v?) terms in the Lagrangian are proportional to

F.oH wsin?@  HpoHpsr? sin? 0
zod1F1 i D041 D4 7 (5.6)
2 T 2F,,
and the fact that the black hole satisfies w? < QpoQr1 Qpa is precisely the condition for
this quantity to be positive for all . Thus the metric on (the velocity subsector of) moduli

space, g;;, is well-behaved since we have

gijdXide > 0, where (5.7)
F..Hpy wsin®0 . HpoHpsr?sin? 6 9
— v
2 r2 2F,, ’

3i;dX1dX7 = (Hpo + BgHD4)<

and v? = 2 + 1202 + 12 cos? 03 .
The charge qr1 = k g1 becomes
ar1 = k27peVs(Hpo + B3Hpa)r?sin? 0 (5.8)
qD4
F2 Hpir? — 2wF,, sin 0 + HpoHpyr® sin® 6
F2 r?

X (1 + 5th

and the angular momenta are computed to be

_ dr19D4

i1 = kj1 . (5.9)
ia = kja = 7psVik x | (Qpo + B3Qpa) sin (5.10)
Hpo + B2Hpy) ¢
+ ( Do FO D4) 02 (FZQUler2 — 2wF,, sin? 6 + HDOHD47“4 sin? 9) cos? 9] .

In contrast to the supersymmetric case, jo can now be positive or negative.
Let us recall that F, is independent of all worldvolume variables but ¢. The field Fy,,
satisfies the Bianchi identity dF' = 0, whence the relations

OF oo +0.Fig + 05 Foy =0 — O1F.0 = 0, (511)
OFo7 + Op1 Fyg + Ops Py = 0 — OiFg7 = 0, (5.12)
athg + 8909th + 818F9t =0— athg =0. (5.13)

Eq. (5.11) leads to the conservation of qp4; the three equations (5.11)—(5.13) together lead
to conservation of qpg. It follows from (3.12) and (3.16) that the dipole charges npe and
npg remain constant as well (although for a supergravity supertube they are not conserved
in general).

Naturally, conservation of j; and js follow from the equations of motion of the La-

grangian for ¢, and ¢o:

a2l —o, 995 (5.14)

O By
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(In the case of j; we have momentarily treated ¢; as though it depended on time and then
used the expanded Lagrangian (A.2).) Meanwhile, the equations of motion for A; give

oL oL
0=0,— =0 ——— 5.15
“OF, OFy’ (5.15)
where a,b ={t,0,2,2% ... 2°}. For b = z this leads to the conservation of qr;. When
b = o, equations (5.11)—(5.13) along with (5.15) imply that
Fy, = const. (5.16)

Thus there are trajectories in which the supersymmetric value of Fi,, namely Fi, = 0, is

maintained throughout the motion; these are the ones considered in the analysis below.
Setting Fi, =0 = qﬁl, the energy takes the form

oL oL .0L  OL

oF, Tar 05 T2 Db

= 27 R, Tr19r1 + Tpoqpo + Vs TD4qD4+AE. (5.17)

E = F,

After using (5.8) and (5.10) to eliminate 6 F, and ¢y for the conserved quantities gr; and
J2, we find that AFE, for 6 < 7, is given by

AE = (5.18)
F.;
2 (HDO + BgHD4) (FZQO.HF17'2 + HpoHp4 r4sin? 6 — 2wk, sin? 0)

TpeVek

" [71/ (tp6Vs) — (Hpo + B¢Hpa4) r*sin® 9]2 N [j2/ (Tp6Vs) — (Qpo + B3Qp4) sin? 9]2
sin” 0 cos2 0

(HDO + B(%HDAL) (1!722017{].7’17“2 + HD()HD4 7“4 sin2 0 — 2szg sin2 9) .9 2,42
+ SF 12 (7 +1r96%)|.
zo

The form of AE when 8 = T is presented below. Again, the supertube always satisfies

2
0 > 0.

5.3 Scattering in the plane 0 = 7

The simplest motion of the supertube is that confined to constant values of 6 and ¢s.
However, the only trajectories of constant 6 allowed by the equations of motion are for
0 = m/2 [12]. In this plane, 6 vanishes and the ¢ coordinate of the supertube is undefined.
The motion is purely in the pi-¢1 plane, and since py = 0, r itself reduces to p;. Such
motion is merely the supertube changing its radius while its center of mass, coinciding
with the black hole, remains motionless. We will not consider the behavior of the effective
potential V(r) at very large r since the moduli space approximation breaks down for large
p1, as noted above.
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The angular momentum jo has a conserved nonzero value of jo = jer¢. The excess
energy AFE simplifies to

AE|y_x (5.19)

2
(Hpo + B3Hps) (FLHpir? + HpoHpar* — 2wF,) 2
2F,, 1?2

=71p6Vs k +V(r),

where V(r) is given by

V(r) = AEl,_y g, gos

2

. 2
Feor? [j1/ (p6Vs) — (Hpo + B3Hpa) 7]
272 (HDO + BgHD4) (FEO.HF17’2 + HD()HD4 rd — QLUFZJ) )

= Tp6Vs k (5.20)

The denominator of V(r) is assured of being positive due to the inequality (5.7); meanwhile,
keeping 72 explicit in the numerator makes clear the fact that V(r) vanishes at the origin.

The function V(r) vanishes as r — 0. However, if the expression in brackets in (5.20)
vanishes, the potential also goes to zero at another value of r, thus creating a local mini-
mum. The latter occurs when

(HDO+B(%HD4) r? = QDQ—I-T2—|-B(2) (QD4—|-T2) = I (5.21)
D6 V6

— 1p6Ve (1+ BY) r* = 1 — jerit- (5.22)
Due to the form of (5.20), V = 0 at this stable minimum, and it occurs when

jl > jcrih (523)

at some r; > 0 where

2 J1 — Jerit
rf = ——r 5.24
Y e Ve(1 + B2) (5.24)

When j; < jeri¢ the potential is attractive for all v, with no impediment to merging.

As noted in section 3.3, in an adiabatic merger, supertubes with j; > jes¢ cannot
merge with the black hole. We see here that dynamical mergers differ crucially in that
such tubes only encounter a finite potential barrier, and thus a merger is possible even
when j; > jeri. Further inspection reveals that (5.21) is just (3.26), and (5.24) is (3.27),
which gives the location of a BPS supertube, for § = m/2. This is consistent with the
fact that a motionless supertube with V = 0 saturates the BPS bound and is thus in a
BPS configuration.
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5.4 Scattering for 0 < §
When 0 < 7/2, we use (5.18) to arrive at the effective potential
V(r,0) = AE[;_g 4—0

F.,r?
2r2(Hpo + B2Hpa) (F2,Hp1r2 + HpoHpa r* sin® 6 — 2wF;, sin? 0)

= TpeVs k

; _ 2 2 2 ]2
sin” 6
. [2/(Tp6Vs) — (Qpo + B2Q p4) sin? 0]
cos? 6 '
Like V(r) in (5.20), V(r,#) is nonnegative. Now, our analysis has assumed that
0F.| <1, (5.26)
Vg, = |1 cosOgs| < 1. (5.27)

The constraint (5.26) implies that for a given supertube there is a lower range of 6 below
which our approximations break down; meanwhile, (5.27) invalidates our approximations
for upper range of 6 (and sometimes a lower range also). There are other supertubes,
naively acceptable, whose combinations of j; and qp4 or jo and qp4 are such that (5.26)
or (5.27), respectively, excludes them from our analysis for any value of 6.

Similarly to V(r) in section 5.3, V(r,6) vanishes at 7 = 0, independently of 6. Does
it contain a local minimum as well? To explore this possibility we examine the vanishing
of V. The first term in brackets in (5.25) always vanishes on some curve in the -6 plane.
The second bracketed term can vanish only if 0 < jo < jepit; if such is the case it does so
at the value 8 = 6, where

J2
jcrit .

sinf; = (5.28)

Clearly, for V(r, ) to vanish when r # 0, both bracketed quantities of (5.25) must vanish
at the same location. This is possible when

0 < g2 < Jerit, J1> Jo- (5.29)

It follows that when (5.29) holds, V(r,6) can indeed vanish, and this location constitutes
a stable minimum. This minimum occurs at (r1,61) with r; given by

1 jcrit . .
2
= — j9). 5.30
S e+ B s (J1 — Jo) (5.30)

Equation (5.10) tells us that when 6 = 6; the supertube has no velocity in the ¢o direction,
i.e. ¢g = 0.

Since a motionless supertube with V = 0 is in a BPS configuration, we expect that
the conditions for V = 0 to arise mirror the relations found in earlier sections for the BPS
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supertube. Such is precisely the case: (5.29) is just (3.29), (5.30) is identical to (3.28), and
the vanishing of the first and second bracketed terms of V(r,6) corresponds to the condi-
tions (3.26) and (3.21) respectively. It follows, of course, that p; and ps take the BPS values
of (3.30) and thus that this local minimum occurs at the location that specified Region II
n (5.2). Since we would not expect any non-BPS configurations to be in equilibrium with
the black hole, it makes sense that we find no other true local minima in this potential.

The presence of the potential barrier when 6 < 7/2 is a #-dependent phenomenon.
Specifically, the vanishing of 0,V at two nonzero locations does not require the simultaneous
vanishing of dyV. A potential barrier for motion in the r direction in the cross sections
V(r,0 = const.) appears for certain ranges of § even when (5.29) is not satisfied. Typically,
the barrier is present for all § except the values 8, < 6 < 6, where 0, and 0 are complicated
functions of the parameters. Figures 7 and 8 provide examples of cross sections with and
without a potential barrier. The barrier is present for all 8 when ji/jerie is sufficiently
large, as it is for figure 8; unexpectedly, this too can occur when (5.29) does not hold. The
criteria for such a barrier to occur are complicated and #-dependent. What is guaranteed
by the conditions of (5.29) is that there will at least be a barrier for some values of 6.

As concluded in [12], supertubes in BPS configurations are in positions of stable equi-
librium, separated from the black hole by a potential barrier. It is possible to overcome
the barrier with sufficient kinetic energy, or with the application of additional forces to the
supertube (it can also quantum mechanically tunnel through the barrier). We also empha-
size that the actual dynamical behavior of this section is independent of k, the number of
constituent D6-branes; the supertube behaves the same as would any of its constituents
individually. For completeness we mention that the analogous condition to (5.29) for the
DO-F1 supertube is

0 <j2 < Npa, Jj1>jo. (5.31)

6 Results of the dynamical merger

6.1 The subcritical black hole

The BMPYV black hole satisfies J; = Jo = J where J; is its angular momentum in the plane
of ¢;; moreover, J is constrained by

J2 < ND()ND4NF1. (61)

Violation of an angular momentum bound we will refer to as “overspinning” a black hole.!?
The ADM mass and entropy of the BMPYV black hole are given by
o gsR

s 1
M = — = N, — N
BMPYV = 1o (Qpo + Qpa + Qr1) PV < Do+ 5 Np4 +

\/07ZNF1) , (6.2)

272
Spumpv = TGE)\/QDonQFl — w2 = 21\/NpoNpsy Ny — J2. (6.3)

13«Overspin” here merely denotes exceeding the angular momentum bound, resulting in some (as yet
undetermined) black object; we are not suggesting that naked CTCs would actually be created because the
second law of thermodynamics prevents the occurrence of such causally sick geometries.
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The merger process we consider keeps J; = Jo by letting two identical supertubes simulta-
neously merge with the black hole, where one tube has its circumference in the ¢; direction
and the other in the ¢o direction. We limit ourselves to the case in which the ¢1-wrapped
tube moves in the § = m/2 plane and the ¢o-wrapped tube moves in the # = 0 plane, so
that the analysis of section 5.3 applies to both tubes. During this process, the centers of
the tubes remain motionless while their radii shrink until the merger occurs. We let both
tubes carry angular momentum j — j..;; along their circumferences, where j..;; < j, while
carrying angular momentum j.,.;; in their transverse planes. Thus the black hole receives
an angular momentum contribution of +j in both the ¢; and ¢o planes and we write its

change as
. _ 9F19D4

k
The requirements (5.4) on the flux terms ensure that we can safely neglect their contribution

+Jerit- (6.4)

to the post-merger black hole. Thus the changes in the black hole parameters are just
AJ =j, ANy = 2q;. For ease of computation, we will focus on the case in which jg.;+ < j
so that j =~ qp1 qpa/k to an excellent approximation. Hence, we are assuming that

;29po

quO < jcrit <<] < J,
D4

L qr1, qr < Np, |0F,| < 1, (6.5)

so that we remain within the range of validity of our approximations. We recall that motion
at constant 6 cannot be adiabatic, and observe that the restriction j..;; < j compels these
mergers to have a potential barrier.

Now, in a dynamical merger the presence of the energy AFE, even if it is very small,
implies that the final state of the merger is not BPS and thus not a BMPV black hole.
Therefore the entropy of the end product will differ from (6.3). One candidate for the
result of the merger is the non-BPS, charged, rotating black hole found by Cvetic and
Youm (CY) in [29, 30]. This solution in general has J; # Jo. The post-merger black hole
parameters we will write as J’, N7, @', etc. The CY black hole in the near-BPS limit has
an ADM mass and difference in angular momenta given by the following;:

T m?2 [/ 1 1 1
Mgy = i, <Q/D0 + Qps+ Qp1 + > < A + A + = > + O(m4)) , (6.6)
0 4 F1

™m 1 1 1
= B < 5[y Qs Ui (G + g+ g ) + Om2), (6.7
2G5 DO D4 ¥F1 Q/DO Q,D4 Q,FI
(correcting a typographical error in eq. (2.12) of [12]), where m parameterizes energy above

extremality and satisfies m < Q', Qpy, Q- When J| = Jj = J' the CY entropy has
the form

2 2 / / / / / !
Soy = é (\/Q/DOQID4QIF1 — o 4 ¥00@ns T @po@r + @paQm om?) |,

VEDo@piWr1 65)
6.8

where (7/4G5)w’ = J'. Since after the merger the energy above the BPS bound is just
AE, we can use (6.6) to relate AE to m:

wnﬂ<1 1 1)
AFE = — + + + O(m?). 6.9
4G5 2 QIDO /D4 ,F1 ( ) ( )
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It is also convenient to give the expression for the change in entropy between a CY black
hole with angular momenta equal to J’ and charges {Q'y, Qp,, @1}, and a hypothetical
BMPYV black hole with the same parameters:

55W = Sy — Spupy =

21° m /DOQ/D4 + QIDOQIFl + Qb4QIF1
4G5 V@poRpsQr

In terms of AFE, the constraint on angular momentum for a post-merger CY black hole
with Jj = J} is [12]

+O(m2)> . (6.10)

J'? < NjyNp,Niy (6.11)
Lo Ap2Gs Q0iQF + Q@ + QpiQo + 2Qpo@paQr (@ + @po + @pa)
X + / / / / / / / / /
T DOQD4QF1( D4QF1 + QDOQFl + QD4QDO)
+ O(AE)Q).

Reference [12] discussed the process of using external forces to gently push the pair of
supertubes past the potential barrier, and then moderate their collapse into the black hole
so that the end product of the merger would be just above extremality. It follows that m
and therefore AE can be (for classical purposes) arbitrarily small.

However, the assumption that the end-product of the merger will merely be a CY black
hole is not always appropriate. Using (6.3) it can be seen that adding certain supertubes
to the black hole appears to involve a decrease in the BMPV entropy. Such a situation

occurs when

S/BMPV < SBMPV7 i.e.
NpoNpsNpy — J'? < NpgNpsNpy — J2, (6.12)

which, for j &~ qp1 qps/k, happens when the charges of the supertubes and original black

hole satisfy'*
NpoNpaqr1 + NpoNr1dpa + NpaNrE19po

qr19pa/k

This would appear to contribute a negative change in the entropy:

< J. (6.13)

AS® = Shypy — Sevpy (6.14)
Jar19pa — E(NpoNpaqr1 + NpoNr1dpa + NpaNF1qpo)

-2
k\/NpoNpsNp; — J2

Q

It is emphasized that AS® is a change representing a dynamical process, while 5™, as

written, is simply the difference in the expressions for the CY and BMPYV entropies.
Now, the entropy of the supertube itself is completely negligible relative to that of the

black hole [6].1° Let us perform the merger (involving supertubes that satisfy (6.13)) in

11t is not obvious, but such mergers are possible while all the conditions of (6.5) still hold.
15 And since the black hole has no dipole charges, there is no danger of the ‘entropy enhancement’ discussed
in [31].
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such a way that the same would be true of any radiation produced.'® If the outcome were
a CY black hole, the overall change in entropy would essentially be

AS = Sty — Spupy = 650 4+ AS?). (6.15)

But from (6.9) and (6.10), we see that if AE were small enough, the entropy difference
651 would not be enough to offset the decrease AS®3), i.e. the overall change in entropy
AS would appear to be negative, in violation of the generalized second law (GSL) of
thermodynamics. Therefore, the GSL prevents the outcome of this merger from being
merely a CY black hole. If, as conjectured, the CY solution is the only solution of minimal
five dimensional supergravity that reduces to the BMPV black hole in the BPS limit, it
seems that no black hole is a suitable candidate for the end product of such a merger.!”
Instead, other black objects and combinations of them must be considered, and in [12] it
was suggested that the black hole could fragment into a pair of black rings, or a black ring
encircling a rotating black hole. Some properties of black rings are given in appendix C.

The above analysis of the entropy extends the previous notion of black hole fragmenta-
tion. That is, the claim of [12] was made only in the context of overspinning a near-critical
black hole; here we see that it must be considered for certain subcritical black holes also.
Thus we have presented a larger class of fragmentation mergers. Reference [22] discussed
adiabatic supertube/BMPV mergers as a special case of adiabatic black ring/BMPV merg-
ers. Their results raise the interesting possibility that, if fragmentation mergers indeed
occur, the post-radiation endpoint of the above process could be a pair of concentric per-
pendicular black rings surrounding a rotating black hole, i.e. a charged version of the
“bi-ring black Saturn” of [33]. The investigations in [24] have shown that for overspinning
mergers, discussed in more detail below, a pair of black rings without a central black hole
is also an option. An in-depth exploration of the nature of this final state would certainly
be illuminating.

6.2 The near-critical black hole: J? ~ NpoNpsNpi

When the BMPV angular momentum is very near the critical value v/ NpoNpsNr1, we must
consider the question of whether or not it is possible for supertube mergers to overspin the
black hole. Since fragmentation mergers satisfy

NpoNpsNpy — J'2 < NpoNpaNpy — J2,
while overspinning mergers by definition have
NpoNp Ny —J' %<0, (6.16)

it is clear from (6.1) that overspinning mergers are just a subset of fragmentation mergers.
Let us continue our analysis of the process that involves a pair of identical supertubes
merging with the black hole, as described in section 6.1. Straightforward algebra reveals

5The role of radiation in this scenario is discussed in detail in [12].
"On the other hand, in [32] it was suggested that other non-extreme black hole solutions with less
symmetry than CY exist; if such solutions were stable these would also have to be considered.
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Figure 9. This figure shows the range of Npg for which the BMPV bound is violated when
NFl = 10‘100,ND4 = 1046, qr1 = 108_6, D4 = 5 X 10327qD0 = 10100, k=90and J ~ \/ND0ND4NF1.
Here N*P"™ = 5.98 x 10112 and NP = 4.64 x 10'13.

that under certain conditions it is indeed possible for such a merger to produce a black
object which satisfies (6.16). To delineate these conditions, we define

Nr1Npa
2(qr1Np4a + qpaNp1)?
X (j 2 —2qpo (471 Npa + 4paNr1) £3v/i2 — 44po(Npadr1 + Nr1 qpa) )

NP = (6.17)

If N*”™ > qpo, then a criterion to violate the BMPV bound (6.1) takes the form

N*P™ < Npg < N, (6.18)
otherwise (6.18) merely becomes
apo < Npo < NP (6.19)

An example is shown in figure 9. We note that Ni” in depends on parameters of both the

supertube and the black hole.

Now, for N3 to be real, the quantity in the square root must of course be nonnegative;
it turns out that violation of the bound requires that it be positive. So in addition it is
required that

i2 — 4qpo (Np1qr1 + Np1qps) > 0 (6.20)

for the BMPV bound to be exceeded. Hence, a pair of identical supertubes that sat-
isfy (6.18) [or (6.19) as appropriate] and (6.20) can indeed overspin a near-critical BMPV
black hole.

For overspinning mergers involving a pair of DO-F1 supertubes (subject to the relevant
restrictions analogous to (6.5)), instead of the set (6.18)—(6.20) the only requirement for

an overspin is

NpoNr1 j*
Npyg < ; 6.21
1™ (Nr1gpo + Npogri)? (6.21)
there is no analog of N**". There is also a D0-F1 counterpart to (6.13):
Npa(N N
pa(Npogr1 + Nr1qpo) <7 (6.22)

4F19D0
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It is straightforward to show that overspinning mergers must produce a potential barrier
for these tubes as well.

”Thus we have shown that, in the moduli space approximation, it s possible to violate
the BMPV bound, but such mergers, like all fragmentation mergers discussed here, must
produce a potential barrier (just as was found in [12] for a pair of DO-F1 supertubes).
We have assumed that the process involves only perturbations small enough to make no
perceptible change in the relations (6.18)—(6.20). The excess energy AE can be arbitrarily
small, and it is clear that if we perform the merger such that AFE is less than a certain
value, the CY angular momentum bound (6.11) will be violated also.

Another process of interest is to let a single supertube, or two supertubes with suffi-
ciently unequal angular momenta, merge with the black hole. Such a merger can be ar-
ranged to have m low enough so that the resulting object cannot satisfy the constraint (6.7).
(Recall that in the adiabatic merger, this would not happen because the applied torque
increases jo to ensure that j; = jo at the point of the merger.) Violation of (6.7) shows that
the end result of these mergers is neither a BMPV nor CY black hole. Such phenomena,
like overspinning mergers, are special cases of fragmentation mergers.

7 Conclusions

The usefulness of the DBI description is that it allows us to treat time-dependent phenom-
ena, and the success of this approach for the two-charge supertube motivated the present
study. It is perhaps unsurprising that the basic attributes of the scattering process for
three-charge supertube — the existence of a critical angular momentum, the existence of
a stable minimum under certain conditions, the necessity of a potential barrier for any
violation of the BMPV bound to take place — are very similar to those for the the two-
charge supertube.

Meanwhile, we have established a correspondence with the supergravity results of [22],
thereby identifying and addressing a gauge ambiguity in the background R-R fields. Such
a comparison could, of course, be pursued further, in hopes of understanding the origin of
the physics underlying the replacement (4.16). It should be kept in mind that at the time
of writing, the various worldvolume formulations of the three-charge supertube from [5]
and [10] are still distinct. Reference [5] presented a worldvolume description of a calibrated
supertube, and it would be interesting to see if such a tube has a different merger outcome.
And of course, a fair amount could be clarified about D0-D4-F1 (and thus D1-D5-P)
microstates, in the process of showing explicitly in any of these formulations that the
three-charge supertube indeed has a discrete spectrum, in the manner of [18, 19].

The notion of a thermodynamic instability of (small deformations of) a BMPV black
hole was brought up in [12];'® it was suggested that an overspinning merger could cause
the black hole to fission into several black objects. Here we have extended these results.
Due to the generality of (6.22) for the two-charge case and (6.13) for the three-charge case,

18We say ‘deformation’ because strictly speaking, the instability was posited for C'Y, not BMPV, black
holes. This is because the latter, being BPS, are not expected to have linear instabilities. Again, it is
assumed here that there are no small deformations of the BMPV black hole other than the CY solution.
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overspinning mergers are but a subset of fragmentation mergers, because (6.13) and (6.22)
hold for many supertubes that do not overspin the black hole. Therefore, the supposed
instability arises under more general conditions than discussed in [12].

Finally, the results of [22] raise the possibility that the endpoint of a fragmentation
merger involving a BMPV black hole and two supertubes in orthogonal planes may be a
slightly nonextremal version of one of the configurations found in [25]. This would be a
pair of orthogonal charged black rings in the overspinning case, or a pair of black rings
with an additional central black hole in the non-overspinning case. Possible candidates
include charged versions of black bi-rings found in [33, 34|, and the bi-ring black Saturn
proposed in [33]. Recent attempts to charge black Saturn, however, have been plagued
with singularities [35]. Moreover, indications from an analysis of the exact DBI action
are that fragmentation mergers might not occur after all. This topic is currently under
investigation. A detailed study of this process will have implications for our knowledge of
the phase structure of higher dimensional black objects [36, 37] in the charged regime.
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A The general second-order Lagrangian

The action S satisfies

S=/£d7$=/(£31+ﬁwz)d7m, (Al)

where L is the Lagrangian density. Our use of the moduli space approximation involves
the expansion of £ to second order in the velocities 9, X* and the gauge fields {F,, F}. },
where 6 F;, = F;, — 1, using the fields given in section 2 and following the methods outlined
in the appendix of [12]. It must be kept in mind that this approximation can break down
when 72 > Q unless the supertube motion as r — oo is from Region I to Region III, as
discussed in section 5.1. The result is that

(Do )7L = —~Feo (14 B}) = (Qpo+ B} Qo1 ) v sin 0
FZU
5 (HDOHFlAtt + B2 (HFIHD4Att))
3

o
M

_l’_

HpoHps (Hpo + BiHpa) AL, 0F7
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+F.? (Hpo + BiHpa) (HpoHpalAst — Vo 0Fy.) Ao 6Fy.
+ (HDO + B(Z)HDAL) (Ast — VoA + HP1 Agid Fy)
F—l
+% (Hpo + B§Hpa)
(Ft2a' + HDOHD4AUO'Att + (Sth (QAO'O' - 4’YO'A0't + HFIAUO' 5th) )a (AQ)

where, for {{,n} taking values in the set {o,t}, we have

a¢1 3¢2

= Nge + 2 e (A.3)
_oror 50000 2 001 061 5002 002

Agy = 9€ on +r 9¢ 1 +7?sin? 0 e on +r 8§ an and  (A.4)

77ZJt<T — %%_%% (A5)

ot Jo do Ot
After explicitly implementing the embedding via

{r=r(t),0 =0(t),p1 = 0,p2 = Pa(t)}, (A.6)

these reduce to
Ayo =12sin20, Ay =0, Ay =72+ 1202 + 12 cos? 6<;§22, (A7)
Yo =7, W =V2b2, Yo =—d2, (A.8)

and L reduces to (5.5).

In [12] the Lagrangian was first computed without reference to a specific embedding.
However, we have found that due to the gauge ambiguity, the proper WZ term to use
depends on which embedding is chosen. Namely, it turns out that equations (2.4) and (2.17)
for C®) and C(") are valid for the embedding with ¢ = o, but if instead ¢1 = o (which
of course is the focus of most of the paper), C® and C(7 are given by (2.18) and (2.19).
For the latter case we arrive at the WZ term given by

(tpe k) ' Lwz = (Hﬁi <1 + 72 ¢2) — 1+ B2 [Hpt(1 + 72 ¢2) — 1])an
+ (B3Hpg + Hpy) 71 0F: + (Qpo + B3Qpa) ¢osin®6.  (A.9)

We also note that expressing dF}, in terms of conserved quantities gives

Fz2c7 T2[j1/TD6‘/6 — (Hpo + B%HD4)7‘2 sin? 0]

0F,,= ,  (A.10
* r2(Hpo + B2Hpa)(F2Z Hp1r? + HpoHpyrtsin® 0 — 2wF,, sin? 0) sin® ( )

and we can do the same for the ¢o component of the linear velocity:
Vg, = |1 cosOa| (A.11)

F.or[j2/7D6V6 — (Qpo + Bj QD4) sin? 6]
r2(Hpo + B2Hps)(F2 Hp1r? + HpoHpardsin? 6 — 2wF,, sin?0) cos 0|~
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Lastly, we can also mention the other worldvolume supertube construction in [10],
the “superposition” supertube, in which the three-charge supertube is realized as a su-
perposition of two-charge supertubes. Since this object is constructed from worldvolumes
of different species of D-brane it is not a proper supertube, however. Specifically, it is
created from a superposition of a set of ko D2-brane supertubes with DO and F1 charge,
superimposed upon kg D6-brane supertubes of the same shape and radius with D4 and F1
charge. It is also possible to add a collection of k5 NS5-brane supertubes with DO and D4
charge. Naturally, the D6-branes and NS5-branes are wrapped on the 7%. We note that
the superposition option is not available for the supergravity supertubes because nonlinear
interactions come into play [5].

B The embedding radius

The worldvolume interval is given by
ds® = gupdz®dz® = gudt® +2g,,dt do+2g..dt dz+ gyedo’+2g.,do dz+gzzdz2+d52T4 , (B.1)

where the worldvolume metric gq, is the pullback of the spacetime metric G, to the

worldvolume of the supertube:
ozt Ox”

9o = Gy af
With the embedding of section 3.3 the components g, are

(B.2)

g = —H, 1/QILIDi/QlLlFl (1 + — cos 20 gf)g) + HE/02H1/2 (7"2 +720% + r? cos? 9(;5%) )

_ _H*1/2H*1/2H—1 i : 20 u’j : 29 29 3
Jio = DO D4 Fi | 2 sin“ 6 + i sin“ 6 cos* 0 ¢o | ,

_ HY2pl/2,2 1/2 1/2 i w?
9oo = Hpg Hp, 7 sin 29 — Hp,,/"Hp HFlr—sm 0,

Gos = H1/2H1/2HF11,

9tz = gzo =0,

966 = 977 = g8s = go9 = Hl/ZH o (B.3)
keeping in mind that the metric is in the string frame and w is the angular momentum
parameter of the black hole from (2.10). In the BPS limit, the velocities {7, 7,7 cos ¢}
vanish. Furthermore, we can change bases by switching from {dt,do} to {e",dc} where
e =dt + =] sin? @do and dé = do, obtaining

ds? — —1/277—-1/217—1 /.0 1/2 1/2 2 1/2 171/2 1

$2 = —Hp PHp P Hil (9)° + Hy Hy2r? sin® 0d6° + Hyl Hyl  Hpld2? + ds?
= —H,)PHyPHyl () + R2d6® + HYP HYP Hypld2? + ds2a. (B.4)

We now have a worldvolume interval that is free of off-diagonal terms and more suited to
a notion of proper circumference. What we call the embedding radius R = R()Z ) is the
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proper circumference of the supertube divided by 27, that is R? = g55. Explicitly,
R® = HIZHY A2 sin? 0 = (Qpo +12) "% (Qpa +12) "/ sin2. (B.5)

It is perhaps useful to point out that the transformation dt — dt+ % sin? @do does not lead
to a globally defined timelike coordinate due to the fact that the S} is noncontractible.!?
This prevents us from introducing a coordinate ¢ such that dt = €.

The corresponding Type IIB solution is obtained by T-dualizing the spacetime IIA
fields on the z coordinate (see e.g. [12]); the resulting pulled-back metric has nonzero gy,

gt- and g.,. In this case we switch from {dt,do,dz} to {e°,d&,e®} where
¥ =dt + :}—2 sin?0do, € =dz+ :—2 sin?@do, and dé = do. (B.6)
As before, R? is just gss, which gives
- (QD1 + 7"2) 1/2 (QD5 + TQ) Y2 in2 0 (B.7)

for charge parameters Qp; and @ ps. A property of the T-dual metric is that Qp1 = Qpo
and Qps = @p4. Thus we see that the embedding radius for the IIB supertube is the same
as that of the IIA one.

C Supersymmetric black rings: physical parameters

With black rings, the compilation of solutions is not as complete as for black holes. Super-
symmetric black rings were first discovered in [38]; three-charge, three-dipole versions (and
their string theoretic descriptions) were given in [5, 6, 25] and the general family of their
non-supersymmetric deformations is believed to have nine parameters. To date, however,
only a smaller seven-parameter family of these non-supersymmetric solutions is known [9].
The BPS black rings themselves are characterized by up to seven independent parameters.
One possible choice of these seven would be the charges (which are conserved), the dipoles
(which are not conserved), and R, which some refer to as the radius of the ring. Some
expressions for the BPS physical quantities are given below.? The integer-valued charges
and dipoles we label as

{N1, No, N3} = {Npo, Nr1, Nps}, and {n',n% n®} = {nps,nnss,npa}. (C.1)

Following the notation of [12], the ADM mass and angular momenta are given by

1 54 gsR- )
gsvVao! < o \/J €2
1
J2 = 3 (”DGNDO +np2Nps + nyssNr1 — npe np2nNss) , (C3)
o/5/2 o
Ji = Jo+ 4G gs\ﬁnm + g ——"nNp2+ E”NS5 ) (C.4)

19We thank D. Marolf for correspondence on this point.
20The actual result of a fragmentation merger will be non-BPS, but the BPS quantities are close approx-
imations for the near-extremal solutions in which we are interested.
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while the entropy is

S = QW\/NDOND4NF1 — NpoNpaNF1 — J2 —npsnpannss(J1 — J2), (C.5)

where

Re
[1]

2]

[12]

[13]

[14]

[15]
[16]

Npo = Npo —npannss, Nps= Nps—npsnnss, Nrpi=Npi —np2nps. (C.6)

ferences
D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602
[hep-th/0103030] [SPIRES].
J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes,
Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [SPIRES].
R. Emparan, D. Mateos and P.K. Townsend, Supergravity supertubes, JHEP 07 (2001) 011
[hep-th/0106012] [SPIRES].
D. Mateos, S. Ng and P.K. Townsend, Tachyons, supertubes and brane/anti-brane systems,
JHEP 03 (2002) 016 [hep-th/0112054] [SPIRES].
H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric black rings and
three-charge supertubes, Phys. Rev. D 71 (2005) 024033 [hep-th/0408120] [SPIRES].
I. Bena and N.P. Warner, One ring to rule them all ... and in the darkness bind them?, Adv.
Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].
I. Bena and P. Kraus, Microscopic description of black rings in AdS/CFT, JHEP 12 (2004)
070 [hep-th/0408186] [SPIRES].
I. Bena, C.-W. Wang and N.P. Warner, Black rings with varying charge density, JHEP 03
(2006) 015 [hep-th/0411072] [SPIRES].
H. Elvang, R. Emparan and P. Figueras, Non-supersymmetric black rings as thermally
excited supertubes, JHEP 02 (2005) 031 [hep-th/0412130] [SPIRES].
I. Bena and P. Kraus, Three charge supertubes and black hole hair, Phys. Rev. D 70 (2004)
046003 [hep-th/0402144] [SPIRES].
M.R. Douglas, J. Polchinski and A. Strominger, Probing five-dimensional black holes with
D-branes, JHEP 12 (1997) 003 [hep-th/9703031] [SPIRES].
D. Marolf and A. Virmani, A black hole instability in five dimensions?, JHEP 11 (2005) 026
[hep-th/0505044] [SPIRES].
C.A.R. Herdeiro, Special properties of five dimensional BPS rotating black holes, Nucl. Phys.
B 582 (2000) 363 [hep-th/0003063] [SPIRES].
J.M. Maldacena, Black holes in string theory, Ph.D. Thesis, Princeton University (1996),
hep-th/9607235 [SPIRES].
T. Ortin, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004).
I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in bubbling backgrounds: born-infeld
meets supergravity, arXiv:0812.2942 [SPIRES].
M.R. Douglas, Branes within branes, in Strings, branes, and dualities, L. Baulieu et. al. eds.,

Kluwer Academic Publishers, Dordrecht (1999), pg. 267, hep-th/9512077 [SPIRES].

— 38 —


http://dx.doi.org/10.1103/PhysRevLett.87.011602
http://arxiv.org/abs/hep-th/0103030
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0103030
http://dx.doi.org/10.1016/S0370-2693(96)01460-8
http://arxiv.org/abs/hep-th/9602065
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9602065
http://dx.doi.org/10.1088/1126-6708/2001/07/011
http://arxiv.org/abs/hep-th/0106012
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0106012
http://dx.doi.org/10.1088/1126-6708/2002/03/016
http://arxiv.org/abs/hep-th/0112054
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0112054
http://dx.doi.org/10.1103/PhysRevD.71.024033
http://arxiv.org/abs/hep-th/0408120
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408120
http://arxiv.org/abs/hep-th/0408106
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408106
http://dx.doi.org/10.1088/1126-6708/2004/12/070
http://dx.doi.org/10.1088/1126-6708/2004/12/070
http://arxiv.org/abs/hep-th/0408186
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408186
http://dx.doi.org/10.1088/1126-6708/2006/03/015
http://dx.doi.org/10.1088/1126-6708/2006/03/015
http://arxiv.org/abs/hep-th/0411072
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0411072
http://dx.doi.org/10.1088/1126-6708/2005/02/031
http://arxiv.org/abs/hep-th/0412130
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412130
http://dx.doi.org/10.1103/PhysRevD.70.046003
http://dx.doi.org/10.1103/PhysRevD.70.046003
http://arxiv.org/abs/hep-th/0402144
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0402144
http://dx.doi.org/10.1088/1126-6708/1997/12/003
http://arxiv.org/abs/hep-th/9703031
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9703031
http://dx.doi.org/10.1088/1126-6708/2005/11/026
http://arxiv.org/abs/hep-th/0505044
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0505044
http://dx.doi.org/10.1016/S0550-3213(00)00335-7
http://dx.doi.org/10.1016/S0550-3213(00)00335-7
http://arxiv.org/abs/hep-th/0003063
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0003063
http://arxiv.org/abs/hep-th/9607235
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9607235
http://arxiv.org/abs/0812.2942
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.2942
http://arxiv.org/abs/hep-th/9512077
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9512077

[18] B.C. Palmer and D. Marolf, Counting supertubes, JHEP 06 (2004) 028 [hep-th/0403025]
[SPIRES].

[19] D. Bak, Y. Hyakutake, S. Kim and N. Ohta, A geometric look on the microstates of
supertubes, Nucl. Phys. B 712 (2005) 115 [hep-th/0407253] [SPIRES].

[20] P. Kraus, private communication.

[21] I. Bena, Splitting hairs of the three charge black hole, Phys. Rev. D 70 (2004) 105018
[hep-th/0404073] [SPIRES].

[22] 1. Bena, C.-W. Wang and N.P. Warner, Sliding rings and spinning holes, JHEP 05 (2006)
075 [hep-th/0512157] [SPIRES].

[23] 1. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11
(2006) 042 [hep-th/0608217] [SPIRES].

[24] J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013
[hep-th/0408010] [SPIRES].

[25] J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005)
045002 [hep-th/0408122] [SPIRES].

[26] G.T. Horowitz and H.S. Reall, How hairy can a black ring be?, Class. Quant. Grav. 22
(2005) 1289 [hep-th/0411268] [SPIRES].

[27] 1. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.
755 (2008) 1 [hep-th/0701216] [SPIRES].

[28] J. Kluson and K.L. Panigrahi, Supertube dynamics in diverse backgrounds, JHEP 08 (2005)
033 [hep-th/0506012] [SPIRES].

[29] M. Cveti¢ and D. Youm, General rotating five dimensional black holes of toroidally
compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [SPIRES].

[30] M. Cveti¢ and D. Youm, Entropy of non-extreme charged rotating black holes in string
theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [SPIRES].

[31] I. Bena, N. Bobev, C. Ruef and N.P. Warner, Entropy enhancement and black hole
microstates, arXiv:0804.4487 [SPIRES].

[32] H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D 68 (2003)
024024 [Erratum ibid D 70 (2004) 089902] [hep-th/0211290] [SPIRES].

[33] H. Elvang and M.J. Rodriguez, Bicycling black rings, JHEP 04 (2008) 045
[arXiv:0712.2425] [SPIRES].

[34] K. Izumi, Orthogonal black di-ring solution, Prog. Theor. Phys. 119 (2008) 757
[arXiv:0712.0902] [SPIRES].

[35] B. Chng, R. Mann, E. Radu and C. Stelea, Charging black saturn?, JHEP 12 (2008) 009
[arXiv:0809.0154] [SPIRES].

[36] H. Elvang, R. Emparan and P. Figueras, Phases of five-dimensional black holes, JHEP 05
(2007) 056 [hep-th/0702111] [SPIRES].

[37] R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure
of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181]
[SPIRES].

[38] H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev.
Lett. 93 (2004) 211302 [hep-th/0407065] [SPIRES].

-39 —


http://dx.doi.org/10.1088/1126-6708/2004/06/028
http://arxiv.org/abs/hep-th/0403025
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403025
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.042
http://arxiv.org/abs/hep-th/0407253
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0407253
http://dx.doi.org/10.1103/PhysRevD.70.105018
http://arxiv.org/abs/hep-th/0404073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0404073
http://dx.doi.org/10.1088/1126-6708/2006/05/075
http://dx.doi.org/10.1088/1126-6708/2006/05/075
http://arxiv.org/abs/hep-th/0512157
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0512157
http://dx.doi.org/10.1088/1126-6708/2006/11/042
http://dx.doi.org/10.1088/1126-6708/2006/11/042
http://arxiv.org/abs/hep-th/0608217
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0608217
http://dx.doi.org/10.1103/PhysRevD.71.025013
http://arxiv.org/abs/hep-th/0408010
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408010
http://dx.doi.org/10.1103/PhysRevD.71.045002
http://dx.doi.org/10.1103/PhysRevD.71.045002
http://arxiv.org/abs/hep-th/0408122
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408122
http://dx.doi.org/10.1088/0264-9381/22/7/006
http://dx.doi.org/10.1088/0264-9381/22/7/006
http://arxiv.org/abs/hep-th/0411268
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0411268
http://dx.doi.org/10.1007/978-3-540-79523-0
http://dx.doi.org/10.1007/978-3-540-79523-0
http://arxiv.org/abs/hep-th/0701216
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0701216
http://dx.doi.org/10.1088/1126-6708/2005/08/033
http://dx.doi.org/10.1088/1126-6708/2005/08/033
http://arxiv.org/abs/hep-th/0506012
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506012
http://dx.doi.org/10.1016/0550-3213(96)00355-0
http://arxiv.org/abs/hep-th/9603100
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9603100
http://dx.doi.org/10.1103/PhysRevD.54.2612
http://arxiv.org/abs/hep-th/9603147
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9603147
http://arxiv.org/abs/0804.4487
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.4487
http://dx.doi.org/10.1103/PhysRevD.68.024024
http://dx.doi.org/10.1103/PhysRevD.68.024024
http://arxiv.org/abs/hep-th/0211290
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0211290
http://dx.doi.org/10.1088/1126-6708/2008/04/045
http://arxiv.org/abs/0712.2425
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.2425
http://dx.doi.org/10.1143/PTP.119.757
http://arxiv.org/abs/0712.0902
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.0902
http://dx.doi.org/10.1088/1126-6708/2008/12/009
http://arxiv.org/abs/0809.0154
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.0154
http://dx.doi.org/10.1088/1126-6708/2007/05/056
http://dx.doi.org/10.1088/1126-6708/2007/05/056
http://arxiv.org/abs/hep-th/0702111
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0702111
http://dx.doi.org/10.1088/1126-6708/2007/10/110
http://arxiv.org/abs/0708.2181
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.2181
http://dx.doi.org/10.1103/PhysRevLett.93.211302
http://dx.doi.org/10.1103/PhysRevLett.93.211302
http://arxiv.org/abs/hep-th/0407065
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0407065

[39] H. Elvang and P. Figueras, Black saturn, JHEP 05 (2007) 050 [hep-th/0701035] [SPIRES].

[40] J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class.
Quant. Grav. 16 (1999) 1 [hep-th/9810204] [SPIRES].

[41] D. Bak, Y. Hyakutake and N. Ohta, Phase moduli space of supertubes, Nucl. Phys. B 696
(2004) 251 [hep-th/0404104] [SPIRES].

[42] R. Emparan and H.S. Reall, Black rings, Class. Quant. Grav. 23 (2006) R169
[hep-th/0608012] [SPIRES].

40 —


http://dx.doi.org/10.1088/1126-6708/2007/05/050
http://arxiv.org/abs/hep-th/0701035
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0701035
http://dx.doi.org/10.1088/0264-9381/16/1/001
http://dx.doi.org/10.1088/0264-9381/16/1/001
http://arxiv.org/abs/hep-th/9810204
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9810204
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.010
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.010
http://arxiv.org/abs/hep-th/0404104
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0404104
http://dx.doi.org/10.1088/0264-9381/23/20/R01
http://arxiv.org/abs/hep-th/0608012
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0608012

	Introduction
	The BMPV background
	Bena-Kraus supertubes
	Construction
	Bena-Kraus supertubes near a BMPV black hole
	Adiabatic mergers with the black hole

	Comparison of Bena-Kraus and supergravity supertubes
	Isolated supergravity supertubes
	Supergravity supertubes near a BMPV black hole

	The scattering calculation: low velocity dynamical mergers
	Discussion of the approximation
	The dynamical Lagrangian
	theta=pi/2
	theta<pi/2

	Results of the dynamical merger
	The subcritical black hole
	J*2 approx N(D0) N(D4) N(F1)

	Conclusions
	The general second-order Lagrangian
	The embedding radius
	Supersymmetric black rings: physical parameters

